Study of the asymptotic behavior of the solutions of three systems of difference equations of exponential form
نویسندگان
چکیده
In this paper we study the boundedness, the persistence and the asymptotic behavior of the positive solutions of the following systems of two difference equations of exponential form: x nþ1 ¼
منابع مشابه
Asymptotic behavior of a system of two difference equations of exponential form
In this paper, we study the boundedness and persistence of the solutions, the global stability of the unique positive equilibrium point and the rate of convergence of a solution that converges to the equilibrium $E=(bar{x}, bar{y})$ of the system of two difference equations of exponential form: begin{equation*} x_{n+1}=dfrac{a+e^{-(bx_n+cy_n)}}{d+bx_n+cy_n}, y_{n+1}=dfrac{a+e^{-(by_n+cx_n)}}{d+...
متن کاملGlobal Asymptotic Behavior of Positive Solutions for Exponential Form Difference Equations with Three Parameters∗
In this paper, we study a class of second order difference equations with three paremeters. With positive initial values, the asymptotic behavior of positive solutions are investigated.
متن کاملGlobal asymptotic behavior of solutions of an exponential type systems of difference equations
In this paper we study the boundedness, the persistence and the asymptotic behavior of the positive solutions of the following systems of two difference equations of exponential form: xn+1 = α+ βe−yn γ + xn−1 , yn+1 = δ + e−xn ζ + yn−1 , where α, β, γ, δ, , ζ are positive constants and the initial values x−1, x0, y−1, y0 are positive constants. ∗Speaker
متن کاملOn the nature of solutions of the difference equation $mathbf{x_{n+1}=x_{n}x_{n-3}-1}$
We investigate the long-term behavior of solutions of the difference equation[ x_{n+1}=x_{n}x_{n-3}-1 ,, n=0 ,, 1 ,, ldots ,, ]noindent where the initial conditions $x_{-3} ,, x_{-2} ,, x_{-1} ,, x_{0}$ are real numbers. In particular, we look at the periodicity and asymptotic periodicity of solutions, as well as the existence of unbounded solutions.
متن کاملEstimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring
This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 218 شماره
صفحات -
تاریخ انتشار 2012